Self-Dual Graphs
نویسندگان
چکیده
The study of self-duality has attracted some attention over the past decade. A good deal of research in that time has been done on constructing and classifying all self-dual graphs and in particular polyhedra. We will give an overview of the recent research in the first two chapters. In the third chapter, we will show the necessary condition that a self-complementary self-dual graph have n ≡ 0, 1 (mod 8) vertices and we will review White’s infinite class (the Paley graphs, for which n ≡ 1 (mod 8)). Finally, we will construct a new infinite class of self-complementary self-dual graphs for which n ≡ 0 (mod 8).
منابع مشابه
The Structure of Self-dual Plane Graphs with Maximum Degree 4 Jack E. Graver and Elizabeth J. Hartung
Self-dual plane graphs have been studied extensively. C. A. B Smith and W. T. Tutte published A class of self-dual maps in 1950 [9]; in 1992, Archdeacon and Richter [1] described a method for constructing all self-dual plane graphs and a second construction was produced by Servatius and Christopher [5] in 1992. Both constructions are inductive. In this paper, we produce four templates from whic...
متن کاملHyper-self-duality of Hamming and Doob graphs
We show that the Doob and Hamming graphs are hyper-self-dual. We then show that although the Doob graphs are formally dual to certain Hamming graphs, they are not hyper-dual to them. We do so by showing that Bose-Mesner subalgebras and Kronecker products of Bose-Mesner algebras inherit hyper-duality.
متن کاملSelf-dual Spherical Grids
Self-dual plane graphs have been studied extensively. C. A. B Smith and W. T. Tutte published A class of self-dual maps in 1950 [9]; in 1992, Archdeacon and Richter [1] described a method for constructing all self-dual plane graphs and a second construction was produced by Servatius and Christopher [5] in 1992. Both constructions are inductive. In this paper, we produce four templates from whic...
متن کاملThe Smallest Self-dual Graphs in a Pseudosurface
A proper embedding of a graph G in a pseudosurface P is an embedding in which the regions of the complement of G in P are homeomorphic to discs and pinchpoints of P correspond to vertices in G; we say that a proper embedding of G in P is self dual if there exists an isomorphism from G to its topological dual. We show that each graph that has a possibility of being self-dual embeddable in a pseu...
متن کاملNew extremal binary self-dual codes of lengths 64 and 66 from bicubic planar graphs
Abstract. In this work, connected cubic planar bipartite graphs and related binary self-dual codes are studied. Binary self-dual codes of length 16 are obtained by face-vertex incidence matrices of these graphs. By considering their lifts to the ring R2 new extremal binary self-dual codes of lengths 64 are constructed as Gray images. More precisely, we construct 15 new codes of length 64. Moreo...
متن کامل